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In the original formulation of common spatial pattern (CSP), all recording channels are combined when
extracting the variance as input features for a brain computer interface (BCI). This results in overfitting
and robustness problems of the constructed system. Here, we introduce a sparse CSP method in which
only a subset of all available channels is linearly combined when extracting the features, resulting in
improved generalization in classification. We propose a greedy search based generalized eigenvalue
decomposition approach for identifying multiple sparse eigenvectors to compute the spatial projec-
tions. We evaluate the performance of the proposed sparse CSP method in binary classification
problems using electrocorticogram (ECoG) and electroencephalogram (EEG) datasets of brain computer
interface competition 2005. We show that the results obtained by sparse CSP outperform those
obtained by traditional (non-sparse) CSP. When averaged over five subjects in the EEG dataset, the
classification error is 12.3% with average sparseness level of 11.6 compared to 18.4% error obtained by
the traditional CSP with 118 channels. The classification error is 10% with sparseness level of
7 compared to that of 13% obtained by the traditional CSP using 64 channels in the ECoG dataset.
Furthermore, we explored the effectiveness of the proposed sparse methods for extracting sparse

common spatio-spectral patterns (CSSP).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The use of neural activity as a source of information has
enabled the subjects with motor impairments to communicate
with their environment using brain computer interfaces. A brain
computer interface (BCI) extracts critical patterns from neural
activity which are induced by purely mental tasks and processes
to identify the mental state of the subject [1,2].

Recent advances in microprocessor and microcircuit design
have enabled recording of neural data over large number of
channels. One of the most crucial steps in designing a BCI system
is to extract parsimonious features from the multi-channel neural
recordings. The CSP method is a signal processing technique that
extracts features by combining signals from all available record-
ing channels. The method was first proposed in [3] to analyze
abnormal EEG patterns. Since then, it has been one of the most
effective feature extraction tools of current BCI technology in
binary and multi task classification problems [4-7]. The CSP
method [3,8] finds spatial filters which correspond to linear
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weighting of each channel in a multi-channel setup. Namely,
the relationship between the input multi-channel brain signal,
x(t), and the output, xcsp(t), after CSP filtering is given by
xcsp(t)=WTx(t). Here, each column of W is a distinct spatial filter
that captures different spatial localizations of the underlying
brain activity. In a binary BCI application, the solution of the
spatial filters is achieved by solving a generalized eigenvalue
decomposition (GED) problem in which the variance of one class
is maximized while minimizing the variance of the other [2]. The
CSP filters achieve this task by using the spatial correlation
patterns which are sensed from a number of recording channels.
Consequently, dense neural recordings have higher likelihood in
capturing the discriminative spatial patterns as they cover most
of the surface available to assess brain activity. However, this
results in redundancy of information and makes the current BCI
systems more prone to artifacts since it is difficult to obtain
robustness over sessions.

Recent studies [2,9,10] have shown that the CSP method suffers
from a number of problems which pose new challenges when
using this method in practice. Let us shortly summarize these
challenges. Generally, the multi-channel neural recordings are
obtained at different times or sessions. This means that the
parameters necessary to extract features and the classifier are
obtained using the data collected in one session. These parameters
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are used to classify the neural data in another session. The time
difference introduces variation in the neural patterns. Furthermore,
in the case of EEG the electrodes are removed and reattached
between sessions. Variation in the data creates even larger varia-
tion in the extracted features due to linear combinations. Even the
failure of a single channel or an outlier in the data might cause
significant changes in the features. This increases the sensitivity of
the algorithm to intersession variability; therefore, degrades over-
all performance of the CSP method.

Another problem of the CSP method arises when the size of the
training data is smaller than the number of recording channels
[10]. The extraction of the spatial filters in CSP formulation relies
on the estimated correlation matrices for the two tasks we want
to discriminate. In the presence of large number of recording
channels, the estimation of the correlation matrices are poor. As a
result, the algorithm overfits the data and deteriorates the
generalization performance. Consequently, a regularization step
is necessary to overcome the robustness and overfitting problems
of the standard CSP algorithm.

In the standard CSP method there is no constraint on the
number of nonzero components in each spatial filter. Recently, in
[9,11], sparse spatial filters are extracted by adding L1 norm
constraint in to the CSP formulation. In both of the studies, it has
been shown that the number of channels can be reduced
significantly but with a decrease in the classification accuracy.
The solution employed in these approaches most likely gets
trapped in a local minimum and is not the best possible sparse
spatial filter for a given cardinality. This is due to the non-
convexity of the optimization problem to be solved in the CSP
formulation [12, Chapter 3]. At the same time, finding a solution
with a predefined number of nonzero weights in the spatial filter
is not a straightforward task with an L1 norm based approach.

Here, we reformulate the traditional CSP problem to obtain
sparse spatial filters by employing greedy search methods used in
[13,14]. The results given by [13] in the case of principal
component analysis (PCA) problem using L1 norm regularization
compared to that of using greedy search are our motivation to
employ a greedy search based method to find the sparse CSP
filters. In particular, our goal is to extract spatial filters by solving
the CSP formulation such that the resulting filters have only a few
nonzero components. With regularization via sparseness in the
spatial filters, we expect to decrease the sensitivity of the CSP
algorithm to the variations in the multi-channel input data. The
essential idea of the regularization via sparsifying the solution is
presented in a regression framework in [12, Chapter 6]. Basically,
since in CSP framework the features are obtained by multiplying
the spatial filter with the input signal, variation in the input signal
will result in even more variation in the features. Therefore,
forcing the spatial filter to be sparse will diminish the variation
in the features. Clearly, the likelihood of a failure of a single
channel is small in a sparse projection compared to projection
using all the channels. Hence, an improvement in robustness is
expected. Moreover, the covariance matrices can be better esti-
mated using a small sensor suite where a limited number of
training trials is available. Therefore, our approach will enhance
the generalization performance of the CSP method.

With these motivations we constructed an Ly-norm based
sparse CSP approach with multiple eigenvectors where the initial
idea was presented in [15]. Moreover, we extended the sparse CSP
framework to spatio-spectral filtering. Our contribution in this
study is twofold; (a) extending the greedy search based methods
of [14] to find multiple sparse solutions to a GED problem and
(b) studying multiple sparse solutions in CSP and CSSP frame-
works in noninvasive and invasive BCI applications. The goal in
(a) is achieved by formulating the optimization problem in
Lagrange form as employed in [16]. We tested our approach on

two different modalities, the EEG and ECoG datasets which have
distinct characteristics. While EEG is a noninvasive and robust
recording technique, it suffers from spatial specificity and is prone
to artifacts. On the other hand, the ECoG is a highly invasive
technique with superior spatial resolution and high SNR. Consis-
tently, on all subjects, we observed that our method outper-
formed the standard CSP and CSSP method on both EEG and ECoG
datasets. Moreover, the selected cardinality in the sparse spatial
projections for the ECoG dataset was lower than the EEG dataset.
This perfectly correlates with the nature of these modalities
where the ECoG is more spatially localized. Our results show that
the method we proposed can be effectively used on both non-
invasive and invasive modalities.

The rest of the paper is organized as in the following. In the
next section we first provide the details of extracting the standard
CSP filters via the GED formulation. Then, we introduce the details
of our approach to find sparse CSP filters. We explored the
performance of the greedy search based sparse CSP method in a
binary classification problem both on EEG and ECoG datasets used
in BCI competition 2005 [17]. We describe the experimental
setups in Section 3. Then in Section 4, we provide the perfor-
mance evaluation results obtained by the sparse CSP and those
obtained by standard CSP. We provide an exploratory analysis of
the proposed methods in CSSP framework at the end of this part.
Finally, in Section 5 we discuss our results and future work.

2. Methods
2.1. Traditional CSP

Let us shortly describe the traditional CSP method and its
optimization formulation. By traditional CSP we mean the CSP in
its original formulation to distinguish it from our approach as
sparse CSP (sCSP). We refer the reader to [2] and references
therein for a recent review on CSP and its applications.

Let us consider a binary BCI problem with two classes, Y,
[=1,2. Let C be the number of channels and N be the number of
time samples in each channel. Then, X;eR°*N represents the
multi-channel neural data in the ith trial. The labels of each trial
are known during the training. The CSP solves the following
optimization problem to find the spatial filters (w);

wiZw
wl'Zow

argmax 1)
w

in this equation, 2, [ = 1,2 denote estimated covariance matrices
for each class and are C x C dimensional. A simple interpretation
of Eq. (1) can be stated as finding a vector w such that the
variance of class Y; is maximized while that of class Y, is
minimized. This formulation in Eq. (1) is equivalent to the
following:

argmaxw' 2w stwlZw=1 )
w

After writing the latter formulation in Lagrange form and
taking the derivative with respect to the variable w gives us the
following equality:

Jiw=aX,w (€))

Eq. (3) is known as the GED problem, and its closed form
solution is available via joint diagonalization of both of the
numerator and denominator that can be found in [18]. There
are C eigenvector and eigenvalue pairs (w;, &;), all eigenvalues are
positive. Since, from (3) (1/a) 2w = Z,w, the eigenvector which
maximizes the variance in (2) for one class also minimizes the
variance for the other class. Hence, variance is used as feature in
CSP framework. It is a common practice to select an equal number
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eigenvectors from both end of the spectrum as the spatial filters.
Finally, given W=[wy, ..., w¢] is the collection of column vectors
of spatial filters; the output of spatially filtered signal is given as
Z=WT'X. Therefore, each row of Z is a linear combination of all
channels. Assuming W is invertible, then (W~1)"Z=X. This means
each sample of multi-channel X can be written as a linear
combination of columns of (W~1)". In this case, each column
can be considered as an invariant source distribution which is
called a pattern; hence, the name for CSP. This provides an easy
visualization tool for interpretation.

We conclude this part by noting the steps of the CSP based
feature extraction and classification.

i. Each channel of the input signals is filtered in time to extract
information in the relevant frequency band (s).

ii. The CSP filters are computed using the covariance matrices
which are estimated from a manually selected time window
with a typical length of 0.5-1 s.

iii. For each spatial filter, w;, corresponding feature is calculated
as the logarithm of the energy via log (||w/X||3).

iv. A supervised learning method is applied on these extracted
features.

2.2. Sparse CSP (sCSP)

Our goal here is to find sparse CSP filters. Mathematically speak-
ing, this is equivalent to solving the GED problem such that some
coefficients of each eigenvector are constrained to be zero. Before
going any further, we would like to mention potential approaches for
solving the sparse GED problem. At this point it is worthwhile to
make a connection between CSP and Principal Component Analysis,
(PCA). Consider the following CSP formulation:

maxw/Aw  s.tw'Bw=1 “4)

Define another variable z=B'?w and M=B~'?AB~'2, then
Eq. (4) will be equivalent to

maxz'Mz st Zlz=1 (5

The formulation in (5) is known as the PCA problem when the
matrix M is the sample covariance matrix. Hence, by a simple
variable transformation, one can solve the PCA eigenvectors, z,
then using w=B~ "2z one can find the CSP filters. This potentially
gives us the opportunity to employ the existing sparse PCA
algorithms for finding the sparse CSP filters. For a number of
sparse PCA algorithms that enforce sparseness in the solution via
L1 norm regularization, we refer the reader to the studies of
[13,19] and references therein. Note however that these
approaches are not directly applicable; a sparse z may not
necessarily give a sparse w since w=B~"?z and the columns of
B~'2 are not necessarily sparse. Furthermore, in the case of
solving sparse PCA problem, a number of experiments were run
in [13] that compare solutions obtained via L1 norm regulariza-
tion and greedy search. It has been shown that the method based
on a greedy search does provide better results.

2.2.1. Sparse CSP via greedy search

We follow the search approach developed in [14] to obtain
sparse solution to CSP problem. In this scheme, we first explain how
to compute only one sparse eigenvector given the two covariance
matrices. Later, we show how to iteratively compute multiple sparse
eigenvectors using the formulation employed in [16].

Let us assume that we are given two covariance matrices A and
B and a sparse eigenvector w with cardinality k (number of
nonzero coefficients) such that w is a solution of the following

optimization problem:
wlAw
wTBw

argmax stljw||,=k (6)
w
Considering the quadratic term in the numerator, multiplica-
tion of A from left by w' selects rows of A corresponding to
nonzero indices of w. Similarly, multiplication of A from right by
w selects columns of A corresponding to the same indices.
Therefore, maximizing of (6) is equivalent to

ar maxWTAW =ar maxSTAkS
& TBw — '8 sTBys

WiB (7)

Here, s is the vector obtained by only keeping the nonzero
values of w. Similarly, A, and B, are k x k dimensional sub-
matrices obtained by keeping the rows and columns of (A, B)
corresponding to nonzero indices of w. Hence, if we know how to
find a vector s which maximizes the right hand side of the
equality in (7), then that is a sparse vector w, with k nonzero
elements, which also maximizes the left hand side of the equality
in (6). This approach requires searching all k x k sub-matrices of
(A, B) and selecting the one with the largest eigenvalue. Setting k
to any number provides the opportunity to reach the desired
cardinality. However, such a search is computationally complex.
At this point it is worth noting that when extracting a k x k sub-
matrix of (A, B), the row and column indices are the same.
Although the symmetric structure of (A, B) reduces the computa-
tional complexity, searching all possibilities is infeasible for
covariance matrices of large sizes. Therefore, suboptimal search
algorithms are employed to find good solutions without searching
all combinations, [20]. To find a sparse eigenvector with a given
cardinality k <{1,...,C}, in the following we explain the greedy
search methods with reduced complexity.

2.2.1.1. Forward selection (FS). FS starts with an empty index set.
In the first step, k=1, it searches for all 1 x 1 sub-matrices of (A, B)
which are the diagonal elements, and then picks the index which
has the largest value. In the second step, k=2, the search is done
now for all 2 x 2 sub-matrices of (A, B) where one of the indices is
the one selected in the previous step. The GED solution is
computed for each sub-matrix and the eigenvector with the
largest eigenvalue is selected. This sequential forward search
continues until the desired cardinality of the eigenvector is
reached. The main advantage of using FS to find a sparse
eigenvector with a desired cardinality is its low computational
complexity when the cardinality is small.

2.2.1.2. Backward elimination (BE). In BE search, the initial search
index set consists of all the indices. In the first step, k=C, the GED
solution is obtained by the covariance matrices and this provides
the maximum eigenvalue possible. In the second step, k=C—1, all
(C-=1)x(C—1) sub-matrices are searched and corresponding
eigenvalues are calculated. Then, the index (row and column)
which yields the least eigenvalue difference from the first step is
deleted from the index set. This deletion of row and columns
continues until the desired cardinality is reached. Obviously, the
BE method has higher computational complexity than the FS
method when the desired cardinality is small.

2.2.2. Multiple sparse CSP filters

So far, we have explained and shown search methods which
provide a single eigenvector with a sparseness level of interest.
However, in the CSP applications multiple spatial filters are
desired. In order to extract multiple sparse CSP filters, one can
employ the same search methods explained above. However, the
contribution of the previously selected eigenvector(s) should be
removed from the sample covariance matrices. For this particular
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purpose we follow the work of [16]. Clearly, we are interested in
finding the eigenvectors of a GED problem that is obtained by
joint diagonalization of the covariance matrices in an iterative
manner.

We assume now that we have found a number of sparse
eigenvectors, w;, i=1,...,m—1; and we are interested in finding
the next one, wy, The idea is to rewrite the GED objective (2),
such that the relationships among the eigenvectors are stated
explicitly in the optimization formulation as constraints. The
problem of interest we want to solve becomes
argmaxw! Awy, st wl Bwy,=1-wlTw;=0, i=1,..m-1. (8)

Wm

In (8), (A, B) are sample covariance matrices. The objective
function is the same as before but the eigenvector sought for is also
constrained to be T-orthogonal with the existing eigenvectors. The
matrix T is selected such that it is useful for the problem. For
example, in the special case when T is the identity matrix, the
additional constraint involving T means that the new eigenvector is
desired to be orthogonal to the previous eigenvectors. Since we are
interested in the solution which diagonalizes A and B; hence, T is set
to B. This choice makes the projected outputs from each class
uncorrelated. Eq. (8) is the original GED problem with an additional
constraint that the eigenvectors diagonalize B. To see how this setup
also diagonalizes A, we proceed as in the following. Since any
solution to (8) satisfiesAwp, = ABwy,, multiplication of both sides
with any of the previously found eigenvectorw], wfAwm = AW} Bwn,
makes the left hand side of the equality zero. Therefore, the solution
of (8) is equivalent to the solution of (2) which diagonalizes A and B.
Now, we can proceed to extract the vectors wy, iteratively. The
Lagrangian formulation of the problem with constraints is

L(Wm, A, ) = Wh AW + A(1=WEBWi) — oy WE TWiq — -+ - —pty W Twy.
C))

At the optimum solution the partial derivative of L with
respect to w,, equals to zero

dr =0.-2AWn—2ABWn—Up_1TWp_1— - =y Tw; =0 (10)
dwp

Multiplying (10) by W,TTB‘1 from left fori=1, ..., m—1 gives us
m—1 equations of the from

2w TB™ AWy, —2 W] TB™' Bwy— iy, W/ TB ' Twyy 1 — - - ;W[ TB™ ' Tw; =0
an

we note here that the second term in (11) disappears due to second
constraint in (8). By defining a matrix D = [w; - - - W;,;,_1]7and a vector
w=1[ty - fyy_1]"We can write (11) as

-1
2DTB 'Awy = DTB'TD pi—>pu =2 (DTB‘] TDT) DTB 'Awn  (12)

Similarly, (10) can be re-written as 2Awm—TDT,u=2)LBWm,
in which we substitute u that is obtained in (12) and end up
with the following GED problem:

-1
[I—TD" (DTB’l TDT) DTB~' AWy, = /Bwp, (13)

If we define a new matrix, A,=[I—TDY(DTB~'TDT)~!DTB~1]A,
then Eq. (10) becomes

AnWm = ABwp, (14)

This means that the problem to be solved is still a GED
problem but with a different matrix in the numerator. Now, we
can employ any of the greedy search based sparse eigenvector
selection method to solve the new GED problem. This is our
approach to find multiple sparse eigenvectors in an iterative way.
We conclude this section by providing our proposed approach of
finding multiple sparse eigenvectors in an algorithmic form. It is

worth noting that when the matrices A and B in the above
discussion are replaced with appropriate covariance matrices,
then we can find all sparse spatial CSP filters.

In the following, the notation (A, B) refers to solving the CSP
problem via maximizing variance for class A while minimizing
that for class B.

Algorithm 1. Extraction of m CSP filters per class with given
sparseness levels:

Input: Estimated covariance matrices for both classes; A and B
Sparseness levels for each filter, s;, i=1, ..., 2m.

i. Find an initial eigenvector for (A, B) with the sparseness level
s; using one of the methods explained in Section 2.2.1.
ii. Remove the effect of the selected eigenvector(s) to get A, via
equation defined in Section 2.2.2.
iii. Let A=A, repeat steps 1 and 2 until all m filters are extracted
iv. Repeat the first three steps with order of covariance matrices
reversed, (B, A).

3. Datasets and preprocessing

In order to evaluate the performance of our proposed approach,
we implemented a number of experiments using two publicly
available datasets of BCI competition 2005 [17]. In particular we
tackle the intersession variability problem in a multi-channel ECoG
data set and limited training data challenge on an EEG database of
five subjects. In all cases the problem was a binary motor imagery
classification task.

3.1. Raw data

3.1.1. ECoG data

The ECoG data are recorded from subdural electrodes and
consists of 64 channels. During the experiment, the subject
performed either tongue or small left finger movement imagina-
tions. Each 768 samples long trial starts 0.5 s after the stimulus
and lasts 3 s. There are 139 trials available for training, and 50
trials for test from each class. Training dataset was recorded one
week earlier than test dataset. Hence, this dataset poses a great
challenge in generalization over sessions. As a preprocessing step,
we filtered the ECoG data in 8-16 Hz (a-band) using a dB6
wavelet filter. The selection of this frequency band is based on
our previous study using the same dataset [21]. The length of
analysis windows was selected as 1 s.

3.1.2. EEG data

The multi-channel EEG data was recorded from five subjects
(aa, al, av, aw, ay) during either foot or right index finger move-
ment imagination. Signals were collected from 118 electrodes on
the scalp. The number of training and test trials for each subject is
different which provides the opportunity to evaluate the effect of
training size on the overall performance. Namely, starting from
the subject aa to subject ay in order with equal number of trials
for each class; there are total 168, 224, 84, 56, and 28 trials for
training and 112, 56, 196, 224, and 252 trials for test, respectively.
Here the challenge is to estimate robust filters with limited
amount of training samples. Prior to estimating the spatial filters,
the signals are filtered in 8-30 Hz frequency bands which cover
both « and f components. The length of analysis windows was
also selected as 1 s.
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3.2. Feature generation

We are interested in generating features via CSP framework
both using traditional and sparse CSP by following our proposed
approach. We used a 1 s analysis window for both ECoG and EEG
datasets. In each dataset, using the data in the analysis window
the covariance matrices are estimated and 2+2 spatial filters are
extracted via the Algorithm 1 provided in Section 2.2.2. The
features are generated both via traditional and sparse CSP as
provided at the end of Section 2.1. An LDA classifier is considered
as the decision function.

4. Performance evaluation
4.1. Experimental procedure

We executed several experiments to compare the performance
of sCSP to the standard solution. Moreover, we investigated the
efficacy of the greedy forward selection and backward elimination
search techniques.

As mentioned earlier, in both EEG and ECoG cases the training
and test datasets are provided separately. In order to evaluate the
generalization performances, the following procedure is employed.
In the case of EEG data, 10-fold cross validation method is used to
select the optimum sparseness level for the filters except the subject
where only 14 trials are provided for training. For that subject, a
leave one trial out cross validation method is employed instead.
During cross validation, in each fold, four CSP filters are computed
via sparse CSP method where all filters have the same sparseness
that is allowed to vary among (1, 2, 5, 7, 9, 11, 16, 32, 64). This way
the optimum sparseness level is selected in the training data. After
deciding the sparseness level, filters and other classifier parameters
using all available training data and we applied learned model to the
test data in order to obtain the test error.

Similarly, in the ECoG data, a 10-fold cross validation method
is employed using the training data to select the optimum
sparseness level. After this point, the same procedure explained
above is implemented to get the test error.

4.2. Results

4.2.1. EEG

4.2.1.1. General trend. In Table 1, we provide the summary of the
experiments performed. The parameters used to achieve the test
errors are also provided. In all subjects the classification errors
obtained via sCSP based method is substantially lower than those
obtained via traditional CSP in all subjects. The average test error
(12.3%) obtained by proposed sparse methods over five subjects is
significantly lower than the average error obtained by traditional

Table 1
Classification performances, sparseness levels and search methods for the
EEG data.

CSP (18.4%) (p-value=0.013, paired t-test). Another observation is
in the number of channels used to reach the test errors. We
observed that by employing a sCSP based feature extraction, we
not only reduce the number of channels but also improve the
generalization capability of the constructed system.

4.2.1.2. Search method comparison. We provide the results
obtained by the two search methods to compute the sCSP
features in Table 2. Among the five subjects we studied, the FS
method achieved the minimum classification error only once, for
subject aw, and achieved the same error with

BE for subject al. For the rest of the subjects, the BE method
achieved better classification results. The test errors obtained by
sparse methods, the BE method (p-val=0.019) and the FS method
(p-val=0.013, paired t-test), are significantly lower than those
obtained by traditional CSP.

In addition, the BE method also achieved lower error rates
using fewer number of channels. The reason can be explained the
way the individual search methods work. The full covariance
information is available in the beginning of the BE method
whereas that is reached only at the end in the FS method. We
observe that the FS method starts generally selecting those
electrodes which have higher energy or outliers. Therefore, the
available information is better utilized in the BE method. On the
other hand the better performance of BE comes with a trade off in
computational complexity. This is especially apparent when the
desired number of channels is very few and the total number of
channels is high. We observed that the BE method reached to a
better classification error of 12.6% with only an average sparse-
ness level of 6.6 whereas this level was 21 with the FS procedure.
The spatial filters with that constraint will be extracted only in a
couple of steps via the FS method but will take far more steps
with the BE method. The spatial filters have the same number of
nonzero coefficients but not necessarily the filters share the same
channels. In order to better evaluate this issue, we counted the
number of distinct channels used by all four filters at each cross
validation fold and calculated the mean using all available 10
folds. This average is shown under the “Avg. # of Channels”
columns in Table 2. In particular, the total number of channels
used in test by four filters for subjects aa, al, av, aw, ay are 17, 16,
35, 25, and 18 for the BE method and 47, 54, 81, 89, and 35 for the
FS method, respectively. The number of channels used by all four
filters is far less when the method is BE compared to that when
the method is FS. But this is because the optimum sparseness
levels are lower with the BE method. In other words, both of the
methods select almost distinct channels per filter.

In Fig. 1, we provide the average of classification errors using
all five subjects at each cardinality as another comparison
between the BE and FS. When the cardinality is low, the error
level obtained via the BE method is clearly lower than that
obtained via the FS method. This behavior changes after the

Table 2
Classification performances for EEG data, BE compared to FS.

Subject BE FS
Subject Sparse CSP Traditional CSP
Avg. # of Cardinality Test Avg. # of Cardinality Test
Method Cardinality Test error Number of Test Error channels error channels error
(%) channels (%) (%) (%)
aa BE 5 15.8 118 283 aa 17.5 5 15.8 471 16 21.05
al BE 5 1.8 118 3.6 al 14.9 5 1.8 49.5 16 1.8
av BE 11 25 118 30.1 av 37.8 11 25 771 32 26.5
aw FS 32 12.5 118 17 aw 24.7 7 143 84.6 32 12.5
ay BE 5 6.3 118 13.1 ay 16.9 5 6.3 32.2 9 11.9
Avg: 11.6 123 118 184 Avg. 224 6.6 12.6 58.1 21 14.8




74 F. Goksu et al. / Neurocomputing 108 (2013) 69-78

cardinality level is greater than 32. Given the last error point is
the one obtained via the traditional CSP; it is also clear that sCSP
based features if the sparseness level is correctly selected do
provide better results when compared to those obtained via the
traditional CSP.

In order to give a flavor about the distribution of spatial
patterns and sparse spatial filters, in Fig. 2 we provided head
plots of two representative subjects (aa, ay) with which the sparse
solution obtained noticeable improvements with respect the
standard CSP. The patterns and filters were ordered according to
their topographic distribution. The spatial patterns were located
on the left hemisphere and central region which are in correlation
with the cortical areas responsible for the right hand and foot
control. Since the subjects executed foot and hand motor ima-
geries, the locations of estimated patterns and filters were in
accordance with the responsible brain regions. We note that in
both subjects although more emphasis was given to the left motor
and central area, several other channels in the frontal, temporal
and occipital areas were used by the standard CSP method. As
expected the sCSP filters were generally distributed in the center
of spatial patterns or in the neighboring regions. In both subjects
the best sparseness level is five. When compared to the standard
CSP solution, the use of sCSP filters resulted in a drop in
classification error around 50% in these subjects.

In [22], Arvaneh et al. used the L1/L2 ratio as a penalty term
and they applied their algorithm to the BCI competition Il EEG
dataset IVa [11] which we used in this paper. Here, we present the
results that were obtained by employing one filter from each end
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Fig. 1. Average classification errors for EEG data, BE compared to FS.

of the sparse solutions for comparison purposes. We achieved a
mean error rate of 10.6 + 10.7% for the BE method using 17.6 + 14
channels. They achieved mean error rate of 17.7 + 15.4% using
22.6 + 11 channels. The one tail t-test between their results and
our BE results showed that there was a significant improvement
(p-value=0.018) without a significant change in the number of
channels (p-value=0.167).

4.2.2. ECoG
In this part we provide the results obtained from the ECoG
data. Summary of the results are provided in Table 3.

4.2.2.1. General trend. Recall that the optimum sparseness level is
selected via cross validation in the training data. We observed
that the FS method and the traditional CSP achieved the same test
error of 13%. For the BE method the test error was 10%. Both
sparse methods achieved the best classification error with a
sparseness level of 7. We note that the sCSP based methods
provide similar, as in the case of FS, or lower test errors as in the
case of BE when compared to the traditional method. It should be
noted that the FS method achieved the same error of the
traditional method with less number of channels. As we verified
in the previous part for EEG setup, constraining the number of
channels used by the spatial filters does result in a better
generalization performance in a CSP framework also on the
experiments with ECoG signals.

4.2.2.2. Search method comparison. In order to provide a
comparison between the sCSP methods, the classification error
curves versus the sparseness level are shown in Fig. 3. First thing
to note is that although both methods use the same sparseness
level, the test errors are 10% and 13% for the BE and the FS
method, respectively. Note also that the results obtained at
different sparseness levels with the BE method are consistently
better than those obtained by the sparse FS method. With the BE

Table 3
Classification performances for ECoG data.

Search method Sparse CSP Traditional CSP
BE FS

Cardinality 7 7 64

Test error (%) 10 13 13

Avg. # of channels 21.2 22 64

Pattern Filter

Sparse Filter

-

Pattern Filter Sparse Filter

Fig. 2. For two representative subjects, the first and last CSP patterns, related filters and sparse filter solutions are presented from left to right. The sCSP filters were
estimated with BE search. The spatial patterns were located on the left hemisphere and central region representing the hand and foot imageries respectively. Note that the
standard CSP method estimated filters using all channels where the filter weights were spread all over the head. For both subjects the sCSP filters used only five channels in

each filter.



F. Goksu et al. / Neurocomputing 108 (2013) 69-78 75

method, the test error of 10% has been achieved with three more
sparseness levels in addition to optimum selected level of 7.

It can be claimed that the results obtained by the BE method
are more stable than those of by the FS method. Namely, change
in the sparseness does not result in big difference in the
classification error. Finally, we evaluate the number of channels
for each filter. We counted the number of channels for each cross
validation fold and take the average to find the average number of
channels per filter. The total number of distinct channels used by
four spatial filters during test are 23 and 20 for the FS method and
the BE method, respectively. This means that the sparse CSP
methods provide comparable and better classification results than
those obtained by the traditional CSP method by using only 1/3rd
of the available channels.

In Fig. 4 we provided the distribution of first spatial patterns
and corresponding full and sparse spatial filters from each class.
The sparse filter is obtained using the BE method with sparseness
level of 7. One observation to note is that the spatial patterns
obtained via the ECoG data is well localized as opposed to those of
obtained via the EEG data. This is due to the higher spatial
resolution available with the former. The spatial pattern shown

—BE /
——FS

Classification Error (%)

[T T T W 1 1 1 1

12 5§7911 16 32 64
Cardinality

Fig. 3. Classification errors for ECoG data, BE compared to FS.

Spatial Pattern

Hand

Tongue

Spatial Filter

in the first row was located in the part of the brain responsible for
left hand imagery and the spatial pattern shown in the second
row was located in the part of brain region responsible for speech
imagery. These results confirm our expectation with respect to
imagined movements. As they are clearly seen in the figure, the
sparse filters select the channels whose locations overlap well
with the spatial patterns. On the contrary, the full spatial filters
utilize channels over the entire area.

4.3. Computational complexity

It is worth mentioning the scalability of the proposed methods
in comparison to the traditional approach. The worst case
computational complexities of finding one generalized eigenvec-
tor for the FS, BE, are reported as O(n®), O(n*), [14] and the
computational complexity of the traditional method is O(n®), [18],
where n denotes the size of the covariance matrices. The cases
where the desired cardinality is large and where the desired
cardinality is small correspond to the worst case situations for the
FS and BE methods, respectively. Therefore, for the case where the
goal is to extract sparse enough CSP filters, we can expect the FS
and BE methods to be implemented considerably faster and
slower than the traditional method, respectively.

Since the BE method has high computational complexity, it
will not be the desired method to obtain sparse solutions when
the dimension of the problem is high and this maybe the case for
some other application areas. But with around 100 channels in a
typical BCI application, computational complexity should not be a
problem when using the greedy search based methods.

4.4. Sparse spatio-spectral filtering

We have shown the superior performance of our proposed
sCSP methods in the previous sections over the traditional
technique. Here, we argue that a method which is derived from
traditional CSP may benefit from employing proposed sparse
methods. In this scheme, we conducted an exploratory analysis
of using proposed sCSP methods in spatio-spectral filtering. The
common spatio-spectral pattern (CSSP) method of [23] is an

Sparse Spatial Filter

Fig. 4. Spatial pattern and spatial filters: full versus sparse. The filters in the first row minimize the variance of the finger movement whereas the filters in the second row

minimize the variance of the tongue imaginations.
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extension of the traditional CSP that combines spectral filtering
with the original spatial filtering. Their approach was simple and
efficient as we described next. In Section 2, X;eR“*" is defined as
the ith trial of the multi-channel neural data where C is the
number of channels and N is the number of time samples in each
channel. First by considering only one coordinate in time a
delayed trial is obtained, Xi, where 7t denotes the amount of
delay. Then the traditional CSP algorithm is employed on the
enlarged space that is obtained by merging the original and
delayed channels to extract the spatial filters. Therefore, in this
enlarged space the size of the covariance matrices are 2C, hence,
the length of the spatiao-spectro filters. In each filter half of the
coefficients apply to X; and the other half to X{ to derive the CSP
filtered multi-channel neural data as in Z;=W"X;+ W X?. Here, W
denotes the collection of spatial filters that applies to the original
signals and W, the same that applies to the delayed signals. Since
each time sample of the spatially filtered signal z; is expressed as
the linear combination of the signal and its delayed version, the
whole process described so far can be interpreted as an applica-
tion of the CSP algorithm to the finite impulse response (FIR)
filtered multi-channel neural data, hence, it is named as CSSP.

The advantage of this approach is that it extracts the spectral
(frequency) information from the data that is specific to the
subject. This advantage on the other hand comes with an addi-
tional (delay) parameter, 7, to tune for during the calibration
phase. Finally, it is clear that when the delay parameter is set to
zero we get the original CSP algorithm. For further information
about the details of the CSSP algorithm and its performance in a
BCI framework we refer the reader to [23]. Since the CSSP
algorithm is an extension of the original CSP algorithm as
described earlier, the proposed sparse methods are also applic-
able to CSSP as well, hence, we would like to obtain sparse CSSP.
It is worth noting that employing sparseness in CSSP framework
was attempted in [24]. We have to emphasize that in [24]
sparseness is sought in the length of the spectral FIR filter which
was allowed to be arbitrary long. On the contrary, we are seeking
sparseness in the spatial domain.

In our exploration the goal is to analyze the effect of sparse-
ness in CSSP as a function of the number of channels. In the first
step the best delay parameter is decided for each subject in both
of the EEG and ECoG datasets by the standard CSSP algorithm.

In the second step, sparse CSSP filters are extracted with the
proposed BE and FS methods on the twice enlarged space that is
obtained by the original and delayed data. In the above analysis in
order to keep the spectral information that is obtained by
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processing the original signal and its delayed version, we modify
the greedy search methods such that a channel and its delayed
version are considered at each step. In more detail, in each
iteration, a channel and its delayed version is removed in the BE
method or added in the FS method. The spatial sparseness levels
are allowed to be one of (2, 3,4, 5,6, 7, 8,9,10, 11, 12, 14, 16, 20,
24, 28, 32, 40, 48, 64). The results as classification errors are
provided in Fig. 5. In the case of EEG dataset the errors are
averaged over five subjects. In addition to classification errors
obtained by each of the proposed sparse methods in CSSP
algorithm as a function of sparseness level, the errors obtained
by the traditional CSP algorithm are provided in the plots as well.

In both of the plots in Fig. 5, the last error points of FS and BE
correspond to the errors that are obtained by the original CSSP
method working on all channels with the best delay possible.
We observed that the standard CSSP method resulted in 18% error
in the ECoG dataset and 13.8% error in the EEG dataset. The
spectral filtering in addition to spatial filtering results in worse
performance in ECoG dataset and better performance in the EEG
dataset when all the channels are used. Employing sparseness in
the spatial domain improved the CSSP performance in ECoG
dataset considerably by both FS and BE methods especially when
the spatial filters are highly to moderately sparse. The better
performance is only valid in the EEG dataset when the spatial
filters are highly sparse. In both of the datasets the best perfor-
mances are obtained by spatial filters that are considerably sparse
and moderately sparse with the BE method and the FS method,
respectively. Nevertheless, the sparse CSSP method provided
lower classification error rates than the standard CSSP and sparse
CSP methods in both datasets.

5. Conclusion

In this study, we show that by employing LO norm based
greedy search methods, sparse spatial filters are easily extracted
in a CSP framework. These sparse spatial filters provide better
performances than those obtained by the traditional non-sparse
approaches.

Our motivation when seeking for a sparse CSP solution is
simple. By making each spatial filter sparse in terms of the
number of channels used, there will be a decrease in the amount
of variance explained by linear combination of channels but this
decrease will be small since only a subset of channels are
expected to contribute to real variance difference. Therefore,

30
——CSSPFS
—o— CSSP BE
- - -CsP
25 L CSPFS
e - - CSPBE
S
v
c
Re]
T
L
@
[2]
©
O
5
29 32 48 64 118

Cardinality

Fig. 5. Classification errors for sparse CSSP using different search strategies. The last data points using all channels correspond to standard CSSP.
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constructing spatial filters from a subset of all available channels
yields improved generalization performance. First, we observe the
CSP optimization formulation as a GED problem. After showing the
combinatorial nature of the sparse GED problem solution, we
employed greedy search based techniques to find multiple sparse
eigenvectors. For this particular purpose, we utilized two different
greedy search techniques, (i) forward selection and (ii) backward
elimination with low computational complexity. Finally, we eval-
uated the performance of our sparse CSP based approach on two
binary BCI problems.

The sparse CSP method was applied to the multi-channel EEG
and ECoG datasets of BCI competition 2005. These two different
setups gave us the opportunity to examine the performance of
our algorithm on two different challenges; (i) availability of
limited amount of training data and (ii) intersession variability,
respectively. In more detail, the number of subjects and the
varying training and test data sizes in the EEG based data setup
did provide us to investigate the generalization capacity of our
sparse CSP method in a unique way. The test errors obtained by
the sparse CSP method in EEG data over five subjects was 12.3%
whereas the test error rate of the traditional CSP was 18.4%. We
observed that the BE method reached to a better classification
error of 12.6% with only an average sparseness level of 6.6 over
five subjects. This is a remarkable decrease in the number of
channels used compared to the standard CSP. Our results show
that the generalization capabilities of the sparse CSP methods
compared to those obtained by the traditional CSP method do
improve not only when there is large amount of recording
channels but also when the size of the training data is small.

Using the ECoG data we are able to evaluate our method’s
performance when there is intersession variability between the
training and test sets. The sparse CSP methods, based on the BE
and FS search approaches achieved lower or comparable test
errors when compared to those of traditional CSP method,
respectively. This result verifies our claim that by reducing the
number of channels in a CSP problem using greedy search, the
extracted features are made more robust and less prone to the
variations in the data between training and test phases.

The classification performances obtained by the sparse CSP
based methods are superior to those obtained by the traditional
CSP method. To the best of our knowledge our study is the first
showing that sparse spatial filters can provide better classification
accuracy of neural activity than the traditional CSP in a BCI
framework. When individual search methods are investigated in
detail, the results obtained by the BE method are better than
those obtained by the FS method especially when the sparseness
level is low. However, the computational complexity of BE was
much higher than the FS. This in turn gives an opportunity to
trade off between computational complexity and classification
performance. One would prefer the BE method if time required to
extract the spatial filters is not a concern. On the other hand, the
FS method is preferable for fast extraction of the spatial filters
especially when the desired sparseness level for each filter is low.

We observed that in both EEG and ECoG datasets, on average
the channel overlap among the extracted sparse spatial filters is
rather low. Furthermore, the optimum sparseness levels on
average are very low when compared to the number of available
channels for BE in EEG and for BE and FS in ECoG datasets. On
average, the total number of channels used by the BE method
does not exceed 19% and 33% of all available channels in EEG and
ECoG, respectively. On the other hand, the FS method used 49%
and 34% of all available channels in EEG and ECoG, respectively.
The reason we believe is peculiar to the source signal. ECoG
signals do have high signal to noise ratios and are spatially more
localized since the electrodes are directly in contact with the
brain whereas the EEG signals contain a considerable amount of

noise and have lower spatial resolution as it is measured on the
scalp. Due to these facts the FS method could not find a good
solution to the CSP problem with lower sparseness level on the
EEG data as the channels with outliers or those ones with high
variance at the temporal and occipital regions were generally
selected at initial iterations. However, the FS method did find
reasonable sparse filters with the ECoG data.

In the studies [9 and 11], where sparse CSP solutions are
achieved via L1 norm regularization, the number of channels used
by each spatial filter is reduced considerably but with a loss in the
classification accuracy. This is in contrast with our results
obtained via greedy search based sparse CSP. We believe the
reason can be explained that for the same sparseness level, search
based methods are able to find sparse eigenvectors with higher
variance difference between classes [14]. Similar results were
observed in [13] in the case of PCA problem where using L1 norm
regularization compared to that of using greedy search explained
less variance of the data. Finally, with respect to greedy search
based methods for finding sparse CSP filters, it should be noted
that this approach is flexible in the sense that it provides
eigenvectors (solutions) with all sparseness levels. Using this
flexibility, it is possible to force a certain pattern when searching
for the sparse solution which is not available by L1 norm based
solution when extracting the solution.

We extended our sparse solution to the CSSP method which is
an extension of CSP method where a spatio-spectral filter is
constructed on the data in a FIR filter framework by embedding
a delayed version of the original. This gives the CSSP the
opportunity to select subject specific bands in the 8-30 Hz pre-
filtered EEG/ECoG data. While providing a spectral selectivity in
the selected 8-30 Hz band, it should be noted that even a single
delay doubles the amount of the data in the CSSP framework. For
instance, a neural recording obtained from 64 channels and a
single tap delay results a covariance matrix of 128 x 128 to be
used in the estimation of spatio-spectral filters. Consequently the
curse of dimensionality becomes a more important issue in CSSP
than the CSP. As evidenced with the results we obtained from
multi-channel EEG and ECoG data, selection of a sparse spatio-
spectral filter will likely increase the generalization capacity of
the CSSP method as in a very high dimensional space the
algorithm might easily find spurious projections and overfit the
data. Consequently, finding sparse solutions might have higher
impact in CSSP applications.

In this scheme, we note that the sparseness in spectral domain
was introduced in [24] by so called “Common Sparse Spectral Spatial
Pattern” (CSSSP) algorithm. The approach in [23] only explored the
best choice among single tap filters where the delay was investi-
gated between 0 and 15. While employing the sparse CSSP method,
we focused on the sparseness in the spatial domain. We need to
note that, the LO norm based greedy search method that we propose
can seek sparseness in spatial, spectral and jointly in spatio-spectral
domain depending on the implementation of the search technique.
However, as we describe below, implementation of the latter two
are infeasible due to the computational complexity. Assume that we
are seeking for sparseness in spectral domain using the same
amount of channels in our EEG data. In this scheme, as in [24], a
16 tap filter will yield a covariance matrix size of 1856 x 1856 (118
channels x 16 filter taps). After incorporating all delays of the FIR
filter in the CSSP framework, the covariance matrix which we will
use in greedy search becomes quite large. On this large matrix, a
column (simultaneously a row) can be eliminated at a time. This will
allow one to select channel subsets with arbitrary length filters for
each. Consequently, using our technique, it is possible to obtain
sparse solutions in spatio-spectral domain jointly. However, working
with such a big matrix will increase the computational complexity
dramatically. Implementing a search in a high dimensional space
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will cause severely extended training times which would not be
feasible for practical BCI scenarios.

It should be noted that, as in [24], it is also possible to seek
sparseness only in spectral domain using our approach. For this
particular purpose, one can simply restrict the elimination to
delayed samples of all channels in the covariance matrix. However,
such an approach is still far too complex as the dimension of the
search space is quite large. Therefore, in this manuscript, we elected
to set a single fixed delay for all channels as in [23] and eliminated a
channel and its delayed version at a time. Consequently, the greedy
search is implemented in the spatial domain (118 x 118 for EEG and
64 x 64 for ECoG), which enabled us to run/train the algorithm on a
standard computer architecture within a reasonable time limit.

Compared to CSP and CSSP, we observed noticeable better
results with our spatially sparse CSSP method. Interestingly, on
similar motor imagery tasks, the authors of [24] reported the
median classification error rate for the CSSSP, CSSP and CSP
algorithms as 20.7%, 21.0% and for 23.3%, respectively. Although
they concluded that the CSSSP is superior to CSSP and CSP, to our
understanding, these error rates indicated that the sparseness in
spectral domain did not provide any noticeable improvements
over standard CSSP. In contrary, our results indicate that there is a
clear difference between standard CSSP and its sparse derivation
(18% vs. 8% for ECoG and 13.8% vs. 10.8% for EEG datasets using
CSSP and sparse CSSP respectively). This could be due to the
amount of sparseness achieved in the final setup. Specifically, the
difference between the number of electrodes (118 for EEG and 64
for ECoG) and temporal delays (16 filter taps) is large. Conse-
quently, compressing the spatial domain might be more advanta-
geous than the spectral due to the difference in their dimensions.
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