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Abstract— The common spatial pattern(CSP) technique lin-
early combines the channels to filter the neural signal spa-
tially. It operates on data that is band-pass filtered between
particular cutoff frequency for all subjects and channels. On
the other hand the common spatio-spectral pattern (CSSP)
method extends the the traditional CSP technique that combines
spectral filtering with the original spatial filtering by using the
temporally delayed version of the original data. All recording
channels and the delayed versions are combined when extract-
ing the variance as input features for a brain machine interface.
This linear combination increases the number of channels
extensively and results in overfitting and robustness problems
of the constructed system in presence of low number of training
trials. To overcome this problem, we proposed spatially sparse
CSSP method in which only a subset of all available channels
and its temporally shifted versions are linearly combined when
extracting the features. We utilized three different versions of
the recursive weight elimination (RWE) technique to select a
subset of electrodes for spatio-spectral projections. We evaluate
the performance of the proposed method to distinguish between
the movements of the first three fingers of the hand using elec-
trocorticogram (ECoG) signals of the brain computer interface
competition 2005. We observed that spatially sparse CSSP filter
outperforms both original CSP and CSSP filter and results in
improved generalization in classification.

I. INTRODUCTION

The functions of human hand such as grasping, lateral hip,

pinch, etc. plays a vital role in every aspect of the activities

of the human life. Several people loose their hand function

due to amputation or interrupted neural pathways. Therefore,

they have limitations in the activity of daily living. The brain

controlled prosthetic hand, a neuroprosthetics, can help such

subjects to regain their hand function and live without any

assistance. In this scheme the neural decoding engine of such

a prosthetics should be able to extract relevant information

from brain such that it can generate necessary control output

to replicate complex hand function.

The advances in electrode design and recording technol-

ogy make it possible to record neurophysiological signals

from a high number of channels to increase the spatial

density of the recording channels to improve the accuracy

and applicability of the neuroprosthetic hands. The increase

in number of recording channels also increases the compu-

tational complexity of the neural decoding algorithms. To

reduce the complexity of the neural signal decoding stage,

the number of channels should be decreased by retaining
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most of the discrimination property of the oscillatory neural

signal. The common spatial pattern(CSP) is widely used

in BMI applications for reducing the dimensionality of the

neural data. It linearly combines the recording channels into

a few virtual channels in order to create a variance imbalance

between competing classes [1], [2]. To use CSP method,

the data needs to be band pass filtered spectrally. On the

other hand,, the common spatio-spectral pattern CSSP [3]

extends the CSP method in order to obtain channel specific

spectral filters. The CSSP and CSP methods are successfully

used in BMI applications. However they generally overfit the

data when the number of training trials is limited [4], [5].

Sparse CSP method may have an important role to overcome

overfitting problem. It has been shown that such methods

are superior to their non-sparse counterparts in terms of

generalization capability [6]–[9]. Recently, sparsification is

extended to the CSSP algorithm by employing greedy solu-

tions to select channel subsets. Due to large dimensionality

originating from filter taps in CSSP the complexity of greedy

solution was high. Therefore the spectral filters were limited

into two taps.

In this paper, we construct spatially sparse spatio-spectral

filters with several taps and study the performance of them

in a BMI application. In particular, we introduced three

different versions of the recently introduce RWE method [9]

to select a subset of electrodes with lower complexity. In

order to investigate its generalization capability, we used this

method as a feature extraction engine for the classification

of electrocorticogram (ECoG) related to the movements of

three different fingers. Such a decoder is expected to drive

a robotic hand with three fingers. We show that spatial

sparsification of the spatio-spectral filters increases the clas-

sification accuracy dramatically. In the next section we first

refer to the details of the traditional CSP method and then

show the relation between the spatio-spectral filtering with

the original CSP formulation. Next, we describe the RWE

method which is used to construct spatially sparse spatio-

spectral projections with low complexity. Finally we provide

experimental results and our conclusion.

II. MATERIALS AND METHODS

A. Traditional CSP Method

The CSP method uses a spatial projection which is a linear

combination of all recording channels to create variance

imbalance of two competing classes A and B. The spatial

projection is computed as follows:

XCSP = W
T
Xi
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where the columns of W are the vectors representing each

spatial projection and Xi is the multichannel ECoG data of

the ith trial.

The variance of the spatially projected data can be ex-

pressed in terms of the original data. Let the covariance

matrix of the original data be Σ and the projection vector

be w, then the variance of the projected data expressed as

w
T
Σw. To create a variance imbalance between class A and

B, we need to maximize the Rayleigh quotient (RQ) which

is defined as follows:

RQ(w) =
w

T
Aw

wTBw

where A and B are the covariance matrices of class A and

B respectively.

Maximizing the RQ is equivalent to the following opti-

mization problem:

maximize
w

w
T
Aw

subject to w
T
Bw = 1.

(1)

To solve the optimization problem expressed in (1), we

use Lagrange multipliers method to obtain the equivalent

problem in the form of Aw = λBw which is generalized

eigenvalue decomposition (GED) of the covariance matrices

A and B. The solutions w to this problem are the joint

eigenvectors of A and B and λ is the associated eigenvalue

for a particular joint eigenvector.

B. Common Spatio-Spectral Filters (CSSP)

The common spatio-spectral pattern (CSSP) method of [3]

is an extension of the traditional CSP that filters the data

spectrally and spatially at the same time. The multichannel

data for the ith trial is denoted as Xi ∈ R
C×N where C is

the number of channels and N is the number of samples. A

delayed trial is obtained Xi,m, where m denotes the delay

index. Then the delayed versions of this trial is concatenated

to form an enlarged space. The delay index m varies from 0

to M where M is the order of spectral filter. The traditional

CSP algorithm is employed on the enlarged space. Let the

enlarged trial data be Ei ∈ R
C(M+1)×N and the CSP

solution of this enlarged data set be W ∈ R
C(M+1)×D,

where D is number of projections. The projection of the

enlarged trial data can be expresssed in terms of the signal

and its delayed versions as follows:

Yi = W
T
Ei =

M∑

m=0

W
T
mXi,m

Here, Wm ∈ R
C×D denotes the collection of spatial filters

that are applied to signal which is delayed with the amount

of m. It should be noted that the filter weights in Wm are

obtained from the GED solution of the enlarged covariance

matrices. Since each time sample of the spatially filtered

signal Yi ∈ R
D×N is expressed as the linear combination of

the original signal and its delayed versions, the whole process

described so far can be interpreted as an application of the

CSP algorithm to the finite impulse response (FIR) filtered

multi-channel neural data, hence, it is named as common

spatio-spectral pattern (CSSP). The advantage of this ap-

proach is that it extracts the spectral (frequency) information

from the data that is specific to the subject and the channel.

This advantage on the other hand comes with an additional

(delay) parameter, M , to be tuned during the training phase.

Moreover, the enlarged space, which results in a much larger

covariance matrix of size C(M +1) while solving the GED,

causes overfitting and reduces the generalization capability

of the classifier. Therefore, in practice a single delay is used

which corresponds to a dimensionality of 2C. As expected,

this short filter also yields poor spectral resolution [3].

These drawbacks led us to find a spatially sparse solution

to increase the robustness and generalization capability of

the CSSP method with higher order spectral filters. In more

detail, only a small number of channels with several temporal

delays will be used to extract features. However, finding

such a subset is trivial and computationally complex. Conse-

quently, a fast technique is needed to eliminate unnecessary

channels. In the past few years, several greedy methods based

on ℓ0 norm such as backward elimination (BE), forward

selection (FS) were proposed to find sparse spatial filters [6].

However, they have high computational complexity when the

number of channels is high. Therefore, we used a modified

version of recursive weight elimination method as described

in [9]. It has been shown that the RWE has dramatically

lower computationally complexity and provides comparable

performance to other ℓ0 norm based greedy sparse methods

[9].

C. The Recursive Weight Elimination (RWE)

The recursive weight elimination (RWE) method is in-

spired from the support vector machine (SVM) based re-

cursive feature elimination framework (SVM-RFE) which

is described in [10]. They eliminated features iteratively

corresponding to the minimum entry of the weight vector

of the SVM, because the elements of the weight vector is

assumed to contribute maximum margin according to their

values. Like in [10], the RWE method assumes that the

coefficients of the spatio-spectral filters are related to their

contribution to the RQ. The RWE algorithm starts with a

full size covariance matrices of the traditional CSP method.

Initially, RWE solves general CSP problem and finds the

weight vector w. The absolute value of the coefficients in w

is sorted and the channel associated with the smallest value

of weight vector is eliminated. In the next step, the GED

solution is obtained from the remaining channel set. This

elimination procedure is iterated until the method reaches

the desired cardinality (number of channels used channels in

final projections). It is worth noting that using sparseness

in CSSP framework was attempted in [11]. We have to

emphasize that in [11] sparseness is sought in the length

of the spectral FIR filter which was allowed to be arbitrarily

long. On the contrary, we are seeking sparseness in the spatial

domain.

In our exploration the goal is to analyze the effect of

sparseness in CSSP as a function of the number of channels.
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For this particular purpose, we modify the RWE search

method such that a channel and its delayed versions are

eliminated at each step. This is accomplished as follows.

After solving the GED in each step on the enlarged co-

variance matrices, the absolute value of the weight vector

is computed. In the following step we study three different

methods, to remove a particular channel and its delayed

indices. Specifically we compute

i. the value corresponding to the maximum,

ii. the value corresponding to the minimum and

iii. the mean value

for each channel over its delayed weight indices. Next, as in

the original RWE, the stored values are sorted in descending

order and the channel associated with minimum value is

eliminated along with its delays. Similar to SVM-RFE, we

estimated the channel with minimum contribution to the RQ

using three different measures. The procedure is iterated

until desired cardinality over channels is reached. We also

investigated the effect of the number of delays (M) of the

spectral filters in classification. In our experiments M ranged

from 0 (regular sparse CSP method) to 5.

D. ECoG Dataset

We applied the sparse CSSP method on multiclass ECoG

of BCI competitions IV. The ECoG data was recorded from

three subjects during finger flexions and extensions [12] with

a sampling rate of 1 kHz. Each electrode array contained

48(8×6) or 64(8×8) platinum electrodes. The finger index to

be moved was shown with a cue on a computer monitor. The

subjects moved one of their five fingers three to five times

during the cue period. The ECoG data of each subject was

sub band filtered in the frequency range of (40−200 Hz). We

used 1 s data following the movement onset in the analysis.

The dataset contains around 146 trials for each subject. In

this paper, we applied sparse CSSP filter to discriminate

between the movements of three fingers only as they can

achieve almost all the functionality that five fingers realize,

and therefore widely used in robotic hand design [13] due

to light weight.

The signal was transformed into four virtual channels by

taking first and last two eigenvectors of the GED solution.

After obtaining first and last eigenvector, we deflated the

covariance matrices with Schur decomposition using the first

and the last eigenvector for the sparse filters [14]. After

computing the outputs of these four spatio-spectral filters,

we calculated the energy of the output signal and converted

it to log scale and used them as input features to lib-SVM

classifier with an RBF kernel [15]. Since we are tackling

a multiclass problem, we used the pairwise discrimination

strategy of [2] for the three-class finger movement data.

We studied the classification accuracy as a function of

cardinality over channels and the amount of delay of the

spectral filter. On the training data with the purpose of

finding optimum sparseness level for the classification, we

computed several sparse solutions with cardinalities 40, 30,

20, 15, 10, 5, 2, 1. A five fold cross validation was applied

to the dataset to study the generalization accuracy. The

classification accuracies are averaged over subjects.
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Fig. 1. The average classification errors over three subjects for different
cardinalities and delays obtained using the max (a), min (c) and average
(e) RWE. The last column reflects the errors for full CSSP method. Also
note that the last column of the first row is the accuracy of traditional
CSP method. The corresponding spectral filters of the sparse CSSP solution
are plotted on the right side in figures (b),(d) and (f). (b) 6 taps (M=5)
for cardinality 5. (d) 3 taps (M=2) for cardinality 5. (f) 3 taps (M=2) for
cardinality 5. The effect of 40-200 Hz band filtering also included.

III. RESULTS

In Fig. 1 the classification errors for different cardinality

and filter lengths are given on the left side. The last error

points correspond to the errors that are obtained by the

original CSSP method working on all channels. The first row

reflects the results that are obtained from spatial filters, only.

Consequently, the error rate of on the last column of the first

row corresponds to the traditional CSP method. We observed

that the minimum classification error 2.9% was obtained by

average RWE method with a cardinality of 5 and delay of

2. For maximum and minimum RWE methods we obtained

3.3% and 4% error with cardinalities 5 and 15 and delays

5 and 2 respectively. Using sparseness in the spatial domain

improved the CSSP classification performance considerably,

especially when the spatial filters are highly to moderately

sparse. The best performances are obtained by spatial fil-

ters that are considerably sparse. Nevertheless, the spatially

sparse CSSP method provided lower classification error rates
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for all delays. The standard CSP and CSSP methods had a

minimum error rate of 15% and 10.1% (with a delay 2)

respectively.

The frequency response of one of the 6 taps filter obtained

by spatially sparse CSSP method at cardinality 5 with

maximum RWE is shown in Fig. 1b. Each line represents the

frequency response of a different channel. The effect of 40-

200 Hz band filtering also included in the plot. The spectral

filters that are formed by sparse CSSP are simply band-pass

filters. The filters suppress the signal around 50 Hz and 160

Hz. This is not the case for average and minimum RWE,

since they have produce a lower order spectral filters. The

filters tend to select higher bands in 40-200 Hz range.

IV. CONCLUSION

The CSP and CSSP methods suffer from overfitting in the

presence of high density recordings with small amount of

training data. Since each delay expands the dimensionality

of the covariance matrices used in GED, the CSSP method

tends to overfit the training data more than CSP. Here, we

constructed spatially sparse CSSP method in which only a

subset of all available channels is linearly combined when

extracting the features. To select a subset of spatio-spectral

projections, we utilized three versions of a modified recursive

weight elimination (RWE) technique which is recently intro-

duced. We evaluate the performance of the proposed method

to distinguish the movement of the first three fingers of the

hand using electrocorticogram (ECoG) signals of the BCI

competition 2005. We observe that spatially sparse spatio-

spectral filters are superior to both original CSP and CSSP.
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