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Abstract—The past decade has shown the importance of
adapting spatial patterns of neural activity while decoding it
in a Brain Machine Interface (BMI) framework. The common
spatial patterns (CSP) algorithm tackles this problem as feature
extractor in binary BMI setups in which a number of spatial pro-
jections are computed while maximizing the variance of one class
and minimizing of the other. Recent advances in data acquisition
systems and sensor design now make recording the neural activity
of the brain with dense electrode grids a possibility. However, high
density recordings also pose new challenges such as overfitting to
data as the number of recording channels increases dramatically
compared to the number of training trials. In this study, we
tackle this problem by constructing a sparse CSP algorithm
through recursive weight elimination (CSP RWE), in which the
spatial projections are computed using a subset of the recording
channels. The sparse projections are expected to yield increased
robustness and eliminate overfitting. We show promising results
towards the classification of multichannel Electrocorticogram
(ECoG) and Electroencephalogram (EEG) datasets with CSP
RWE for a BMI.

I. INTRODUCTION

In a BMI the neural activity of impaired subjects are

translated into communication and control commands, e.g. in

the form of binary labels as used in [1] to select a letter

on a virtual keyboard. Recent advances in data acquisition

systems and sensor design now make it possible to record

the neural activity of the brain with dense electrode grids.

The CSP method first proposed in [2] is a powerful signal

processing technique for feature extraction from multichannel

neural recordings in a BMI framework. The main task is

to obtain a set of spatial filters where each filter has the

same length that is equal to the number of recording channels

available. Using each of these filters the multi channel neural

data is linearly projected into a one-dimensional signal such

that the variance obtained in this dimension is maximized for

one class and minimized for the other. This is achieved by

using the correlation among a number of recording channels

whose spatial extend is related to the executed task. The CSP

method has become one of the commonly used methods in

BMI applications due to its success, [3].

One of the major problems of CSP especially arises in

setups where the number of recording channels is higher

than the number of training trials. This results in overfitting

hence poor generalization performance. Another problem is

lack of robustness over time. The robustness in this case can

be described as the sensitivity of the BMI system to the

variation in data. Multi channel neural recordings obtained

at different times cause variation in data. The extracted CSP

features are quite sensitive to such variations due to extraction

of features by linear combination of all channels. Minimization

of these handicaps requires the placements of electrodes on

the scalp with the same setup from one session to another

which is difficult to accomplish. Moreover, the chance that

CSP uses a noisy or corrupted channel is linearly increased

with increasing number of recording channels. These problems

were previously reported in [4]–[6].

The handicaps summarized above can be reduced by seeking

sparse solutions when extracting the spatial filters. Regu-

larization by sparse solutions in the CSP formulation has

been previously explored in [5], [7]. Basically, with slightly

different formulations, they attempted to obtain sparse CSP

(sCSP) filters by adding an L1 norm constraint on the size of

the spatial filter. In both studies it was reported that although

the number of channels are reduced considerably, this is

obtained with slight decrease in classification performance.

Recently, the authors of this paper attempted to obtain sCSP

filters by employing greedy search methods which resulted

a decrease in the number of channels and an improvement in

the classification performance [8]. When extending the greedy

search based methods to obtain sCSP filters in [8], we only

considered two search approaches; Forward Search (FS) and

Backward Elimination (BE). The former builds the sparse

solution starting with the empty set and adds variables into it

as going forward. On the other hand, the latter starts with full

solution and removes variables iteratively. In the experiments

performed it was observed that both FS and BE methods

outperformed the standard CSP where the BE method provided

better classification performance with low number of channels

than the FS method. However, this better performance of BE

method came with the cost of considerably higher computa-

tional complexity when extracting the sparse solutions. In this

paper we propose a sparse CSP algorithm through recursive

weight elimination (CSP RWE) that is expected to have lower

computational complexity than the BE method while providing

a comparable classification performance. Basically, instead of

searching all possibilities while implementing the BE search,

we rank the weights of the CSP vector and remove the least

important one. This reduces the computational complexity of

original BE search method considerably where the reduction

is especially appreciated when the number of channels is
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large. We explored the performance of the RWE based sCSP

method on publicly available EEG and ECoG datasets of BCI

competitions III and IV. Its performance is evaluated against

the greedy FS and BE methods as well as the traditional CSP.

In the following sections we first introduce the CSP based

feature extraction. Then we shortly review the greedy search

based sparse CSP methods and provide the details of the

proposed RWE method. The paper continues in Section IV

with the experimental setup and obtained results. Finally, we

discuss our results and future work in Section V.

II. COMMON SPATIAL PATTERNS

Let us here shortly describe the traditional CSP and its

optimization formulation. The reader is referred to [4] and

references therein for a detailed review of the CSP method.

The CSP is a supervised signal processing technique that

solves the following optimization problem to find the spatial

filters (w),

arg max
w

wTAw

wTBw
(1)

where A and B denote the sample spatial covariance matrices

of two different classes. The objective function is known as

the Rayleigh quotient (RQ). Deriving the Lagrangian of the

optimization problem in (1) and taking the derivative w.r.t.

variable w gives us;

Aw = λBw (2)

Equation (2), with positive definite matrices is known as the

generalized eigenvalue decomposition (GED) problem, [9],

which has a closed form solution that diagonalizes both of the

covariance matrices when multiplied from left and right. Let C
be the number of recording channels. There are C generalized

eigenvector and eigenvalue pairs. Each eigenvector of this

solution can be used as a spatial filter in a CSP application.

Furthermore, corresponding eigenvalues are variances; hence,

indicate which spatial filters to select for feature extraction.

In practice equal number eigenvectors are selected from both

end of the spectrum. The spatial filters in one half maximize

the variance for one class and in the other half maximize for

the other class.

III. SPARSE CSP

To obtain sparse solutions of the GED problem we follow

the approach developed in [10] which is based on the obser-

vation that finding a sparse solution to a GED problem with

L0 norm penalty on the eigenvector is combinatorial as it is

discussed in the following. We assume that the solution of a

GED problem without cardinality constraint on the solution

vector is available.

Assume the covariance matrices A and B and a sparse

eigenvector w with k nonzero elements are given. That means

w is the solution of the following optimization problem;

arg max
w

wTAw

wTBw
s.t.‖w‖0 = k (3)

We observe that multiplication of A (B) from left by wT

selects rows of A (B) corresponding to non zero indices

of w. Similarly, multiplication of A (B) from right by w
selects columns of A (B) corresponding to the same indices.

Therefore, the objective function in (3) is equivalent to;

arg max
w

wTAw

wTBw
s.t.‖w‖0 = k (4)

Note that the full solution vector s using Ak and Bk is the

sparse solution vector w with appropriate indices such that Ak,

Bk are k×k dimensional submatrices obtained by keeping the

rows and columns of (A,B) corresponding to nonzero indices

of w. As a result, since we know how to solve for s which

maximizes the right hand side of the equality in (4), then we

have a sparse vector w with cardinality k that maximizes the

objective in (3). The catch here is how to decide which k× k
submatrices to keep that is the list of indices of k rows and

columns. Searching all possible k × k submatrices of (A,B)
will be infeasible for covariance matrices of large sizes. The

alternative is to employ suboptimal greedy search algorithms

such as FS and BE. We obtained promising results in our

previous work in [8] using FS and BE.

A. Forward Search

This search starts with empty index set and adds variables

into the set one by one going forward. At the mth step,

it searches for all m × m possible submatrices by adding

one variable at a time and adds the index to the set whose

inclusion increases the variance the most. This sequential

search continues until the desired cardinality is reached.

B. Backward Elimination

The BE search starts with the full set and removes variables

one by one going backward until the desired cardinality is

reached. At any given it searches for all possible submatrices

with the size of interest by removing one variable at a time

and removes the variable (row and column index) from the set

whose exclusion decreases the variance the most.

C. Recursive Weight Elimination

The search method described in detail below is our proposed

solution for decreasing the computational complexity of the

BE method. Assume that the full size of the covariance

matrices in the CSP method that we want to obtain a sparse

solution from is C. The BE method in the first step searches

C−1 separate submatrices and solves GED problem for each

of them to find a sparse solution whose cardinality is C − 1.

Hence, a GED is solved C − 1 times on C − 1 × C − 1
matrices. In each step the size of the submatrices becomes

one less and that is also equal to the number of separate GED

solutions that is performed at each step. As a result, until

the desired cardinality is reached the total number of separate

GED solutions dominates the computational complexity. The

computational complexity is even higher when C is large and

the desired cardinality is small. Based on this observation

we propose employing only one GED solution per step and
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recursively eliminate variables based on their weights. This

recursive weight elimination approach is motivated by the

work of [11] which employed recursive feature elimination in

an SVM framework. The authors of [11] assumed that the co-

efficients of the weight vector are related to their contribution

to the maximum margin of the SVM. In a recursive fashion

they eliminated small weights and corresponding features and

recomputed the SVM margin until desired number of features

remained. Here, with the same spirit, we assume that the values

of the spatial filter coefficients represent their contribution to

the maximized RQ objective function. Our proposed RWE

method proceeds such that in any step instead of searching all

possible submatrices, we get the full solution from the previous

step, rank the coefficients based on the absolute values and

remove the coefficient (index) that has the minimum value.

In the next step we obtain the full solution with this new

channel subset by solving the corresponding GED problem and

repeat the ranking and removing procedure until the desired

cardinality is reached. For instance, in the first step the BE

method solves the GED problem in C−1 separate submatrices

whereas the RWE method uses a single GED solution of C
channels. Consequently, the RWE approach will decrease the

computational complexity of the search dramatically.

D. Multiple Sparse CSP Filters

At this point, we have search methods that provide CSP

filters with cardinalities ranging from 1 to C. After computing

a filter with certain cardinality, we can calculate the next sparse

CSP filter by employing the same search methods following

a deflation procedure [12]. The next spatial filter is computed

using the following equation

[I − TDT (DTB−1TDT )−1]Awm = λBwm (5)

where D = [w1 . . . wm − 1]T . When T is set to equal to

B the solution vectors not only diagonalize the matrix A but

also the matrix B. We can think of the multiplication of the

matrix A from left with D as removing the effect of previous

eigenvectors from it. The problem in (5) is still a GED with

different but known left hand side and any of the greedy search

methods, FS, BE, or RWE can be employed to find the next

sparse eigenvector.

IV. PERFORMANCE EVALUATION

A. Dataset and Preprocessing

We evaluated the performance of the proposed approach on

two class ECoG (dataset I) and EEG (dataset IVa) datasets

of BCI competition 2005, [13] and multiclass ECoG (dataset

4) dataset of BCI competition 2008 [14]. The ECoG dataset

of BCI competition 2005 gives the opportunity for evaluating

the robustness of the proposed approach over time since the

training and test sets are recorded in two different sessions

with one week apart. On the other hand, the EEG data is

provided with small training data that gives the opportunity to

evaluate the classification capacity of the proposed solutions

against overfitting. Finally, we tested our algorithm with a

TABLE I
CLASSIFICATION PERFORMANCE FOR ECOG DATA

Sparse CSP Standard CSP
Search Method RWE BE FS

Sparseness Level 16 7 5 64

Test Error (%) 11 10 12 13

multiclass finger movement BMI problem where small amount

of training data is available,

The ECoG data BCI competition 2005 is recorded with 64

channels with total of 278 trials available for training and

100 trials for testing where the number of trials is evenly

distributed between the two classes. During the experiment, the

subject imagined either tongue or small left finger movements.

The ECoG data is filtered in 8 to 16 Hz (-band). The

EEG dataset of BCI competition 2005 was collected from

five subjects with 118 channels. The subjects were asked to

imagine either foot or right index finger movements. For each

subject there are 280 trials in total. The number of trials for

each subject is 80%, 60%, 30%, 20%, and 10%. The EEG

data is filtered in 8-30Hz band prior to feature extraction.

The ECoG dataset of BCI competition 2008 was recorded

from three subjects during finger flexions and extensions

[14] with a sampling rate of 1 kHz. Each electrode array

contained 48 (8x6) or 64 (8x8) platinum electrodes. The finger

index to be moved was shown with a cue on a computer

monitor. The subjects moved one of their five fingers 3-5 times

during the cue period. The ECoG data of each subject was

subband filtered in the gamma frequency band (65-200Hz).

The dataset contains around 146 trials for each subject. In

all these dataset, we used 1 sec data following the cue onset

for feature extraction. In order to evaluate the classification

performance of all methods we computed four spatial filters.

We used an LDA classifier on this four dimensional feature

space for final decision.

B. Results

In both of the two class ECoG and EEG datasets of

BCI competition 2005, a 10-fold cross validation method is

employed to select the optimum cardinality (sparseness level)

on the training data only. We investigated cardinality values

of (1, 2, 3, 4, 5, 7, 9, 11, 16, 32, and 64) channels. For

multiclass ECoG data, a 10-fold cross validation was not

feasible due to the high computational complexity of the

BE method. Therefore, we studied the RQ as a function of

cardinality in the training data. With decreasing cardinality we

observed a decrease in RQ value We selected the cardinality

that corresponds to the elbow of the RQ curve, which indicates

loss of informative channels. The optimum cardinality was

found to be 2 in the training data.

The summary of the results for two-class ECoG data is pro-

vided in Table I. All sparse CSP based methods outperformed

the standard CSP where the classification errors were 11%,

10% and 12% for the RWE, BE and FS, respectively. The total

numbers of channels used by the sCSP methods are 42, 21,

119



0 20 40 60 80 100 120
5

10

15

20

25

30

35

40

45

Cardinality

C
la

ss
ifi

ca
tio

n 
E

rr
or

 (
%

)
FS
BE
RWE

Fig. 1. Classification Error Comparison for EEG dataset.

and 18. Not only the number of channels is reduced but also

sCSP methods resulted in a better generalization performance.

The test errors curves averaged over five subjects for the

two-class EEG data are provided in Fig. 1. The results obtained

by the RWE method is similar to those of the BE method

and they are consistently better than the FS method. They all

outperform the traditional CSP, last point on the x-axis. When

averaged over five subjects the total numbers of channels used

by the sCSP methods (on the test data) are 26.2, 22.2, and

61.2 for RWE, BE, and FS methods, respectively. It is clear

that the sCSP methods are using considerably lower numbers

of channels than available 118 channels. The RWE method

performs similarly to BE method in terms of classification

error and cardinality.

Finally, we provided the RQ curve as a function of cardinal-

ity and the classification error curve of the multiclass ECoG

data in Fig. 2. We observed that the RQ curve had an elbow at

two channels on the training data. This cardinality level also

provided the best classification error for all sparse methods.

The RWE method resulted to a 17.9% error rate on the test

data. We observed that the standard CSP method achieved a

dramatically higher error rate of 29.8%.

C. Computational Complexity

As explained in Section III-D, the proposed RWE method

should have considerably lower computational complexity than

the BE method. Fig. 3 shows the elapsed time to calculate

one filter on simulated data with sparseness level of 2 using

either BE or RWE methods with different size of number of

channels on the x-axis. The experiment was performed on

a desktop computer with 4GB of RAM and equipped with

a CPU running at 2.66 Ghz. The computational complexity

of the RWE is dramatically lower than the BE method. For

instance from 128 channels the RWE method computes a

sparse filter with cardinality 2 in less than one second. The

same process takes around one and a half minute for the

BE method. In case of using cross validation on the training

data as a parameter or sparseness estimator, the experiments

exploiting the BE method can take several hours. This large

0 10 20 30 40
0.6

0.7

0.8

0.9

1

Cardinality

R
ay

le
ig

h 
Q

uo
tie

nt

(a)

 1 10 20 30 40 All Channels
0

10

20

30

40

Cardinality

C
la

ss
ifi

ca
tio

n 
E

rr
or

 (
%

)
FS
BE
RWE

(b)

Fig. 2. (a) The RQ values for the ECoG finger movement dataset of the
RWE method. (b) The Classification Error rates (%) for FS, BE and RWE.

execution time makes BE method unfeasible to be used in

BMI applications. On the other hand, RWE can be executed

in a few minutes. The RWE method performs comparable to

the BE method, the RWE method can be used easily where

the number of channels is large.

V. CONCLUSION

The CSP method is widely used for feature extraction in

BMI applications with large number of recording channels.

However, use of all available channels during spatial filtering

results in several problems such as overfitting and lack of

robustness over sessions. To overcome the drawbacks of the

traditional CSP method, we proposed a sparse CSP method

based on recursive weight elimination. The RWE based CSP

is an extension of previously proposed greedy search methods

to find sparse CSP filters which are associated with higher

complexity. In this study we have shown that the proposed

RWE based CSP method selects a few numbers of channels

for feature extraction. Compared to standard CSP, estimated

spatial filters provide better classification performance in a bi-

nary and multi class BMI setup. The RWE method performed
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Fig. 3. Computational complexity of BE and RWE methods.

similarly to the BE method with a dramatic decrease in com-

putational complexity. As a result the proposed RWE method

is applicable to other domains to select sparse solutions where

the problem of interest involves solving a GED and the size of

the covariance matrices is large. In particular, it is possible to

extend this this method to select taps of the common spatio-

spectral pattern algorithm of [15] in which the neural data is

filtered in space and frequency simultaneously.
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